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TOWARD CO-EVOLVING SOLUTIONS OF ADVERSARIAL
GROUND STATIONS TRANSIT TIME GAMES FOR P-LEO

CONSTELLATION MANAGEMENT

Manuel Indaco*, Sean Harris†, Deacon Seals†, Daniel R. Tauritz‡, Davide
Guzzetti§

As society increasingly relies on space infrastructure for both civil and military
applications, the number and the size of satellite constellations in low Earth orbit
(LEO) is expected to substantially increase within the next decade; cost reduction
combined with increased availability of satellite technology across different func-
tions is granting access to space and space assets to a larger number of parties,
potentially including bad actors. Malevolent actors may target both the ground
and the space segment on different levels: hacking, spoofing, hijacking and com-
mand intrusion are just a few examples of the variety of attacks that can affect
the performance of a constellation. In the context of different threats, the im-
pact of an attack is greater the longer it remains undetected. Without satellite
interlinks or additional in-orbit supporting networks, orbital motion is one of the
primary factors contributing to the detection time for LEO assets. At the mini-
mum, a compromised satellite has to transit from the attack location to the first
available defender ground station for the attack to be detected and a mitigation
action to occur. In this work, we investigate the particular problem of adversarial
ground station transit time by applying coevolutionary algorithms. The solution
space of adversarial ground station transit time may rapidly become intractable
for analytical or brute force approaches just by the addition of a small number of
satellites, orbital planes, or ground stations; thus, after defining a semi-analytical
method that is able to describe the problem with one satellite and two ground sta-
tions, we apply meta-heuristic algorithms, specifically competitive coevolution,
to explore adversarial ground station transit time games with increasingly higher-
dimensional solution spaces. For example, coevolutionary algorithms may enable
solving adversarial scenarios that include mobile attacking stations, ones that may
introduce an additional layer of complexity in determining the origin and attribu-
tion of an attack. Results demonstrates how, through evolution, effective strategies
for malevolent actors can be found even within scenarios whose mathematical for-
mulation is either too difficult to develop or, if the formulation exists, does not
have a closed-form solution.

INTRODUCTION

In the near future, the number of small satellites orbiting the Earth in the form of large con-
stellations is projected to exceed ten thousand. One of the leaders in the field of proliferated low
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Earth orbit (P-LEO) constellations, SpaceX, is currently operating almost thirteen hundred satel-
lites, with the ambitious goal of reaching twelve thousand units (i.e., the number currently approved
by the Federal Communication Commission (FCC) ). P-LEO constellations enable new forms of
omnipresence, from delivering high-speed internet to remote corners of the globe, to continuous
Earth monitoring. Security threats to space assets, including to P-LEO constellations, are a rela-
tively new phenomenon, yet they have rapidly come to the forefront of concern as such threats are
low-cost, difficult to trace, and, depending on the type of attack, can generate damages of variable
extent. Multiple types of attacks can be performed on a variety of targets: malware and command
intrusions can be introduced into the space segment, spoofing can affect both the user and link seg-
ments, while hacking or hijacking can affect the ground segment.1 Considering the availability of
lightweight commercial technology2 and the military capabilities of state actors to utilize mobile
ground stations or anti-satellite weapons, one of the main characteristics of threats to P-LEO assets
is that they can be conducted from fixed unknown ground stations or unknown mobile stations that
are mounted on naval, aerial, or terrestrial vehicles, thus becoming difficult to locate. Different
authors have initiated effort to prepare for such threats. For example, J.S. Turner3 casts an Attacker-
Defender model for a LEO constellation case into a bi-level integer programming (IP) problem,
attempting to identify a scheduling for the possible location and time of an attack; however, given
the large dimensionality of the problem, the author limits the application of his framework to GEO
constellations with a reduced number of satellites. K. Wagner4 includes simplified adversarial ac-
tions in the maximization of constellation resiliency; in this study, an importance level is associated
with each individual satellite, thus hypothesizing that bad actors will prioritize attacks on satellites
with the highest importance in order to deliver the largest damage. Adversarial actions are also
considered by Zaerpoor et al.5 while investigating the constellation resilience problem; the authors
present a framework to identify actions that yield the highest degradation of system performance
for the lowest cost. In all these cases, a deterministic strategy is assumed for the adversary, without
considering action-planning for the attack strategy.

Another key element of a P-LEO constellation design to account for while considering adversarial
scenarios is the distribution of ground stations across the Earth’s surface. The constellation design
and the ground station distribution can be simultaneously optimized toward selected objectives, such
as to guarantee regional coverage over specific areas. Recently, del Portillo et al.6 formulated the
ground segment distribution problem as a down-selecting optimization problem, with the goal of
identifying the minimum number N of ground stations that still offers optimal coverage of the con-
stellation; given the large search space, the solution is obtained via Non-dominated Sorting Genetic
Algorithm-II (NSGA-II). In another work by del Portillo et al.,7 the authors identify availability of
the network, latency of the network, and cost as the three drivers to derive Pareto-optimal sites for
optical ground stations (OGSs) serving a P-LEO constellation. However, in both cases the authors
define the optimal location with the aim of maximizing performance, without including the possi-
bility of adversarial actions that may disrupt/affect service.

Strategic ground station positioning becomes relevant in the context of adversarial ground station
transit time games. In fact, the impact of an attack may be proportional to the time such an attack
remains undetected: once a satellite is compromised after its passage over an attacker ground sta-
tion, the threat discovery time will be, at least, equal to the transit time between the attacker and a
defender ground station (assuming there are no satellite interlinks nor additional in-orbit supporting
networks). As a consequence, malevolent actors may leverage the longest possible transit time inter-
val to select optimal locations to deliver an attack. However, solving the problem of finding optimal
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locations that would maximize the transit time between ground stations is non-trivial, especially
within a large search space which involves multiple ground stations, a large number of satellites,
and possibly geopolitical constraints. To cope with such intricate and high-dimensional solution
spaces, meta-heuristic algorithms, such as coevolutionary ones, may be exploited to analyze adver-
sarial ground station transit time games.

In this work, we model an attacker-defender adversarial scenario as a ground station transit time
game. Within such a game, a malevolent actor selects positions on the globe that maximize de-
tection time. After introducing a semi-analytical method to define the transit time in a simplified
game model, we exploit evolutionary algorithms to explore adversarial ground station transit time
games with increasingly higher-dimensional solution spaces: at first, we allow only the malevolent
actor, i.e., the attacker, to optimize its ground station locations; then, we introduce the possibility
for the defender to evolve the location of one defender ground station in addition to the fixed de-
fender ground stations, thus defining a competitive coevolutionary scenario. These experiments set
the foundation of a framework to solve transit time games that may be incrementally expanded to
solve more realistic scenarios.

SINGLE SATELLITE, 1 ATTACKER VS 1 DEFENDER

Understanding attacker-defender dynamics within ground station transit time problems becomes
increasingly difficult with larger numbers of satellites and ground stations. To gain insight on
attacker-defender ground station transit time dynamics that may guide more complex investigations,
we first consider one of the simplest possible scenarios. Specifically, we assume that the adversarial
ground station transit time game only comprises one satellite placed in a polar orbit, and two ground
stations, one representing an adversarial actor (i.e., the attacker) and one representing the satellite
operator (i.e., the defender). A schematic of the problem is shown in Figure 1: the black antenna is
the attacker, while the white antenna is the defender.

Figure 1: 1 Attacker vs. 1 Defender problem representation. Single satellite on polar orbit.

Assuming a fixed defender location, the attacker’s goal is to identify the attack location, in terms
of longitude and latitude, that maximizes the defender’s time-to-discovery of an interference. We
assume that the defender checks the status of the satellite as soon as it enters the corresponding
access area, that is, the region where a line of sight exists between the satellite and the defender
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ground station, as defined by a given maximum central angle, λmax (i.e., the radius of the small
circle that defines the access area on an ideally spherical Earth’s surface). The epoch when the de-
fender discovers a satellite interference is denoted as detection time, td. Additionally, we introduce
the following assumptions: 1) the game simulation starts with the satellite at the zenith of the at-
tacker ground station; 2) the attacker compromises the satellite at the initial time, t0; 3) the satellite
travels along a circular orbit in the x− z plane defined within a Cartesian reference system, moving
northward with respect to the position of the attacker at t0; and 4) the Earth is a perfect sphere.
This problem is solved by determining the attacker position that maximizes the transit time of the
satellite from the attacker to the defender station, ∆t = td − t0. The transit time, ∆t, can be found
by looking for the condition where the central angle defined by the sub-satellite point relative to the
defender ground station is smaller than the maximum given central angle. The geometry of the 1
Attacker vs. 1 Defender problem is reported in Figure 2.

Figure 2: Double ground station problem representation

In Figure 2, DEF and ATT are, respectively, the defender and attacker ground stations, ω denotes
the Earth’s rotation rate, and λDEF , δDEF and δATT are polar coordinate angles through which
we define the stations’ position; finally, θ0,SAT represents the true anomaly of the satellite at t0,
assuming that the satellite is on the zenith of the attacker ground station at the initial time. From an
orbital mechanics perspective, the satellite position can be described as a function of the Keplerian
orbital parameters as:

rSAT = rSAT (a, e, i,Ω, ω, θ) (1)

Considering an ideal two-body motion, the true anomaly evolution along a circular orbit is de-
scribed by the time law θ(t) = θ0,SAT + nt, with n denoting the satellite mean motion. Given the
spherical geometry of the model, a more suitable representation of satellite position can be expressed
through spherical coordinates, these being a function of the polar angles previously introduced:

rSAT (t) =

a cos(δATT + nt)
0

a sin(δATT + nt)

 (2)
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where δATT can be substituted with θ0,SAT by noting θ0,SAT = δATT at t0, . Analogously, the
defender ground station position can be expressed through:

rDEF (t) =

RE cos δDEF cos(λDEF + ωt)
RE cos δDEF sin(λDEF + ωt)

RE sin δDEF

 (3)

with RE as the Earth’s radius. Now, assuming an orbital plane characterized by Ω = 0◦ and con-
sidering the satellite as being at the zenith of the attacker ground station at t0, Equation (3) can be
rearranged introducing the relative position of attacker and defender ground stations:

rDEF (t) =

RE cos δDEF cos(∆λ+ ωt)
RE cos δDEF sin(∆λ+ ωt)

RE sin δDEF

 (4)

Introducing a maximum central angle, λmax, the condition for a transit through the defender
access area is given by:

cos(α) ≥ cosλmax (5)

with α being the angle between the spacecraft position and defender’s ground station vectors. Ex-
tracting α from the definition of scalar product between two vectors, development of Equation (5)
leads to the following compact expression:

A cos(∆λ) cos(δATT )−B cos(∆λ) sin(δATT )− C sin(∆λ) cos(δATT ) +D sin(∆λ) sin(δATT ) + ..

..+ E sin(δATT ) + F cos(δATT ) = cosλmax
(6)

In Equation (6) the coefficients A, B, C, D, E, and F are dependent on the defender’s latitude,
Earth’s angular rate, satellite mean motion, and transit time, as given in Equation (7):

A = cos(δDEF ) cos(ωt̄) cos(nt̄)

B = cos(δDEF ) cos(ωt̄) sin(nt̄)

C = cos(δDEF ) sin(ωt̄) cos(nt̄)

D = cos(δDEF ) sin(ωt̄) sin(nt̄)

E = sin(δDEF ) cos(nt̄)

F = sin(δDEF ) sin(nt̄)

(7)

Please note that the equality sign in Equation (6) is considered as a limit condition (i.e., the orig-
inal Equation (5) contains an inequality sign, ≥). Additionally, it has to be remarked that Equation
(6) refers to a polar orbit, x− z plane-confined motion. In the general case of inclined orbit, at most
four additional terms should be added to the expression in Equation (6).
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Polar orbit scenario

Because Equation (6) is a transcendental function in all its variables, a closed-form solution may
be non-trivial, if not impossible. Thus, we start analyzing Equation (6) by considering a limit case
where the defender ground station is at one of the poles. When the defender’s ground station is
at one pole, the coefficients A, B, C, and D in Equation (6) become 0; then, Equation (6) can be
explicitly solved for the transit time:

t̄ =


arcsin(cosλMAX)+π

2
+(π2−δATT )

n δDEF = −90◦

arcsin(cosλMAX)−δATT
n δDEF = +90◦

(8)

To verify the validity of Equation (8), we performed a grid search for the transit time by discretizing
the world map into 1◦x1◦ grid cells using polar angle coordinates. While maintaining the defender
ground station at the South Pole, we varied the attacker location across all cells of the grid, propa-
gated the satellite motion (with an orbit altitude fixed at 200 km) until the satellite encountered the
defender ground station, and recorded the corresponding transit time. By coloring each grid cell as a
function of the corresponding transit time, we produced Figure 3. Figure 3 displays the transit time
as a function of the attacker location in polar coordinates, assuming the defender ground station is
at the South pole. By sampling attacker locations from the grid search map, we can compare the
simulated transit time to the estimate from Equation (8) (which is evaluated for δDEF = -90◦). The
results of this comparison are listed in Table 1. The time discrepancy observable in Table 1 derives
from the fact that a time step of 60 seconds is adopted in the numerical simulation.

Figure 3: 1 Attacker vs 1 Defender transit
time; edge case with defender at the South
Pole.

δATT Simulation Formula

90◦ 2520 s 2507.3 s
0◦ 3840 s 3834.7 s

30◦ 3420 s 3392.3 s
-30◦ 4320 s 4277.2 s

Table 1: Simulation and analytic formula
comparison.

The grid search algorithm developed to validate Equation (6) may be employed to estimate the
transit time under conditions for which a closed-form solution of Equation (6) may not be possible.
For example, consider a defender’s station located at mid-southern latitudes: the transit time is
portrayed as a function of the attacker’s location (expressed in polar coordinates angles) in Figure 4.
In the surface plot in Figure 4, brighter colors indicate a longer transit time, and therefore locations
that give advantage to the attacker. Not surprisingly, as the defender ground station is moved south
(see Figure 5), the transit time rapidly reduces and the transit time pattern tends to that of the limit
case in Figure 3.
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Figure 4: 1 Attacker vs. 1 Defender transit time; the red dot is the position of the defender. (left)
spherical map, (right) equilateral projection.

Figure 5: 1 Attacker vs. 1 Defender transit time; defender in polar region. (left) spherical map,
(right) equilateral projection.

Toward problems with multiple ground stations and inclined orbits

Next, we conduct additional studies to understand whether potential, hidden threats exist within
ground station transit time games, ones within adversarial games that do not have easy-to-engineer
solutions. We start by considering the case of a non-polar orbit with multiple ground stations and
a single satellite, which is solved via the grid search method introduced in the previous section. In
this analysis, we assume an access area for the attacker with a maximum central angle of 2◦ and we
consider as t0 the instant when the satellite is in line of sight with the attacker; we no longer assume
the satellite is necessarily moving northward with respect to the attacker at t0. Figure 6 portrays
the resulting transit time pattern for a game with two defender ground stations, a single attacker,
and a satellite on a non-polar orbit (65◦ inclination). Looking at Figure 6, one can observe how
advantageous locations for the attacker are blended with disadvantageous ones in a non-trivially
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predictable manner, emphasizing how a minor modification of the scenario parameters may lead
to a major difference in the attacker-defender transit time problem solution. The potentially trivial
solution shown in Figure 4, Figure 5 quickly becomes less predictable as multiple ground stations
and inclined orbits are introduced. Thus, the rising complexity of even simplified problems points
to greater challenges in the case of large constellations, necessitating more advanced techniques to
understand and solve adversarial ground station transit time games. Evolutionary algorithms are
particularly well-suited to find solutions in this type of complex, high-dimensional environment due
to their stochastic/heuristic nature.

Figure 6: 1 Attacker vs. 2 Defenders; case with an inclined orbit. (left) spherical map, (right)
equilateral projection.

INTRODUCING AN EVOLUTIONARY ALGORITHM APPROACH

Evolutionary algorithms8 are a class of search algorithms inspired by the process of natural se-
lection, which maintains a population of solution candidates that are iteratively improved through
random mutations to their characteristics and sexual recombination of the traits of multiple parent
solutions into child solutions. Members of the population in an evolutionary algorithm are evaluated
based on a fitness function that assesses the quality of each solution at solving the intended prob-
lem. Such a fitness function could be a mathematical function, or a complex simulation that tests
the behavior of a solution. Solutions with high fitness are more likely to be chosen to reproduce,
and solutions with low fitness are more likely to be eliminated from the population, allowing the
average solution quality in the population to increase over time. This allows exploration of the solu-
tion space without needing to rely on any analysis of the solution landscape that might be infeasible
for complex problems. However, unlike local search algorithms, the genetic recombination oper-
ator enables evolutionary algorithms to search in multiple regions at once, and share useful traits
throughout the population, which helps to prevent premature convergence to a local optimum.

Before introducing more complex scenarios, here intended as scenarios characterized by a large
number of satellites and multiple orbital planes, we directly compare the previous analysis of at-
tacker ground station positioning with the solution provided by our evolutionary algorithm. We
evolve a population of latitude-longitude pairs representing attacker locations given a set of fixed
defender ground stations, and evaluate these locations using a simulated satellite constellation. The
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location of each satellite and whether it is controlled by the attacker or defender is tracked at each
timestep of the simulation. When a satellite passes within range of an attacker ground station, the
attacker compromises it and gains control; when it passes within range of a defender ground station,
the defender repairs it and regains control. The attacker’s goal is overall degradation of the constel-
lation by controlling as many satellites for as long as possible. The attacker’s fitness is the number
of satellites controlled per timestep, summed across all timesteps of the simulation, so evolution
should enable the attacker to find ground station locations which best enable it to gain control of
satellites which the defender cannot quickly retake. This corresponds to maximizing the average
attacker-defender transit time for all satellites passing within line of sight of the attacker. Our sim-
ulated constellation now consists of 10 evenly-spaced polar orbital planes with 10 evenly-spaced
satellites in each orbital plane. The simulation runs for 24 hours with a timestep of one minute;
the defender fixed ground station positions (denoted through the letters A and B in Figure 7) are
arbitrarily chosen. From the previous analysis, we realized that dominant solutions (for both at-
tacker and defender) may arise in case of ground station located in polar region (for polar orbit);
however, such dominant solutions may be unpractical, or, at least, come with high cost, as they
would require physical access to polar regions. As a consequence, we impose boundaries on the
northernmost and southernmost latitudes. For this example, the imposed constraint is latitude ∈
[-70◦,70◦]. The parameters in Table 2 are evolutionary parameters, i.e. parameters commonly used
in genetic programming. For a complete explanation and treatment, please refer to this reference.8

Initial population (µ) Children (λ) # of evaluations Mutation rate Mutation amount

200 300 3,200 50% normal, σ = 1.8◦

Table 2: Evolutionary parameters values used for the simulation.

Figure 7: Evolved attacker ground station locations, with defender ground stations in red (left) and
theoretical grid search results for the single satellite case (right). Colormap referred solely to right
plot.

Figure 7 shows the evolved attacker’s locations with respect to a certain set of defender ground
stations; we can observe how the evolutionary algorithm was able to find multiple regions which
allowed the attacker to effectively control the constellation. Comparing the two images in Figure 7,
it can be observed how the clusters of advantageous regions for an attacker station location depicted
in the left picture are in line with the brighter regions in the right plot, indicating that the results
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obtained by the grid search method and the evolutionary algorithm are consistent.

Competitive coevolution

In the scenarios described so far, only the attacker was allowed to evolve locations for its ground
stations, while the defender was passive, i.e. its ground stations were arbitrarily assigned and fixed;
however, moving toward more realistic scenarios, it is reasonable to assume some countermeasures
from the defender. In our work, we initially model a countermeasure action by granting the defender
the ability to evolve the location of an additional ground station (with respect to the already fixed,
existing one(s)). It is here relevant to highlight that the additional location is not the result of a
reactive behavior of the defender within the simulation time; instead, the additional ground station
location is decided before the simulation as a result of evolution across previous generations and
then added after 50% of the simulation time has passed, meaning that the defender is evolving a
location rather than a strategy. This competitive scenario is game-theoretic in nature, and we solve
it with competitive coevolution,8 a special kind of evolutionary algorithm where the fitness of an
individual is dependent on other individuals. Specifically, we employ a two-population competitive
coevolutionary algorithm where one population contains attacker solutions and the other contains
defender solutions. To assess the effectiveness of the method, we established a set of scenarios
with increasing levels of complexity, which is reflected in the number of ground stations (both for
the attacker and the defender). Twenty runs are executed for each of these scenarios for a short
statistical comparison. A summary of the scenarios is reported in Table 3, while coevolutionary
parameters8 are reported in Table 4.

# of attacker(s) # of defender(s) # of orbital planes # satellites per plane

1 2(+1) 10 10

2 2(+1) 10 10

2 25(+1) 10 10

5 25(+1) 10 10

10 25(+1) 10 10

Table 3: Simulation parameters.

Initial population (µ) Children (λ) # of evaluations Mutation rate Mutation amount

20 30 2,470 50% normal, σ = 1.8◦

Table 4: Coevolutionary parameters.

In the following, we describe two representative case studies: through the first one, we introduce
the tools to interpret more complex scenarios, while in the second one we cast a more realistic
application in our framework.

Case study: 2 vs 2(+1) Attacker-Defender

As complexity and dimensionality of the scenario grows, trivial solutions no longer exist and
interpretability of the results provided by the algorithm may become challenging; to accommodate

10



this, proper analysis tools must be introduced. In this scenario, we assume the defender to have
two fixed ground stations with hand-chosen locations, while the attacker can evolve two different
locations, each to place one ground station; additionally, we allow the defender to evolve a location
for an additional ground station, thus giving a 2 vs. 2(+1) scenario. Ten equally-spaced, polar
planes with ten satellites per orbit are considered in the set up of this experiment; in this case, the
simulation duration length is set to 48 hours, with a timestep of 1 minute. Again, constraints are
placed on the minimum and maximum latitude (latitude ∈ [-70◦,70◦]).

Figure 8: 2 attackers vs. 2(+1) defenders evolved locations. Hand-sampled generations to show
how and how quickly evolution progresses toward the final configuration.

Figure 8 portrays the evolution of ground station location sites for both the attacker and defender
for a few selected generations, including the last, 50th, generation; more specifically, the locations’
coordinates are those associated with the best individual in each population in the corresponding
generation. While one may attempt to interpret the figure to determine the quality of the locations
discovered (either from the attacker’s or the defender’s perspective), Figure 8 alone is insufficient to
characterize the quality of the solution and does not reveal if those locations are more advantageous
for the defender or for the attacker. To this aim, we exploit a tool commonly used in the evolu-
tionary framework: the Current Individual against Ancestral Opponents,9 or CIAO, plot. Figure 9
displays the CIAO plot resultant from one of the several runs conducted for this scenario, viewed
from the defender’s perspective. The color characterizing each cell is representative of the fitness
value defined in the implementation of the coevolutionary algorithm, i.e., the cumulative satellites
uptime; in our case, such uptime represents the summation of the total time for which each satel-
lite belonging to the constellation was under the defender control. Consequently, minimization (or
maximization) of the uptime, governed by the evolution of attacker and defender’s ground stations,
reflect the maximization (or minimization) of satellites transit time among ground stations. More
specifically, in the CIAO plot reported in Figure 9, the uptime value represented through the col-
ormap is computed as the average of n best individuals within the corresponding generation (here,
n = 3). The CIAO plot represents how the coevolution that led to the ground station positions
in Figure 8 behaved across generations. Visually, good coevolution should appear in a CIAO plot
through a smooth color gradient along diagonal direction and should be am monotonic as possible,
without significant (sudden) changes along rows and columns. The actual position represented in
Figure 8 is associated to the best individual belonging to the last defender generation. Finally a
CIAO plot provides a visual representation of relative fitness, which along is insufficient to deter-
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mine which player is leading the game; the determination of the leading player requires, instead, a
direct comparison between the numerical values of the cumulative uptime and the total theoretical
one.

Figure 9: 2 attackers vs 2(+1) CIAO plot.

Grid search simulations are a complementary tool to facilitate a more direct assessment of the
solution optimality. For the scenario under consideration, the cumulative uptime map obtained
from a grid search simulation run is portrayed in Figure 10.

Figure 10: Grid search method visual representation.

For this grid search, longitude and latitude ranges were discretized into a series of 1◦ intervals;
then, fixing the attacker location, a fictitious defender ground station was placed in a single cell and
the total cumulative uptime is computed. This process was then applied to all the cells in the grid.
Direct comparison of Figure 8 and Figure 10 shows how the defender evolved location falls into one
of multiple sub-optimal solution.
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Complementary to the ground station geographic location, we can also visualize what conse-
quences those locations have in terms of coverage provided by the satellites. To determine the
coverage map, we followed a similar process to the one described for the grid search method: at
first, the longitude-latitude ranges were discretized with a 1◦ resolution; then, a fictitious ground
station was placed in each cell and the 48 hours simulation was run. At each step, even if a single
satellite was active over a specific cell, it counted as 100% coverage (represented as a 1): at the
end, an average across the number of time steps was taken. Figure 11 shows how the addition of
the defender ground station in that evolved location counters the solution evolved by the attacker,
reducing the attacker effect on the satellites’ operation. Please note that the uptime percentage re-
ported in Figure 11 is evaluated with respect to the coverage computed before the presence of the
attacker; as a consequence, an uptime of 100% means that the coverage condition is unchanged with
respect to the same scenario without the attacker.

Figure 11: Satellite active regions without (left) and with (right) the +1 defender ground station.

Inspection of Figure 11 shows how, selecting that specific location, the defender is able to con-
sistently gain back coverage over polar region, at the cost of leaving wide satellites downtime areas
at lower latitudes.

Case study: KSAT

So far, we applied our framework to fictitious scenarios, i.e., scenarios with an arbitrary distri-
bution of the ground stations, for both the defender and the attacker, without considering the actual
geographic locations and geographic constraints (e.g., regardless of whether the ground stations
were located on land or water). Next, we apply our coevolution framework to a more realistic
ground station distribution by arbitrarily selecting the KSAT* ground segment. KSAT comprises 25
ground stations distributed around the world, including two polar sites. As the exact position of each
ground station was not available, approximated GPS coordinates from the locations names available
on the official website are adopted in our experiments. Three different scenarios are explored (see
Table 3) with increasing number of attackers; for each case, 20 runs are conducted for statistical
purposes. As for the previous examples, we introduce the constraint of latitude ∈ [-70◦,70◦]; this
assumption assumes particular meaning in these scenarios as here we are actually considering an
existing ground segment distribution. Additionally, the imposed latitude boundary is in line with

*https://www.ksat.no/ground-network-services/
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KSAT ground stations locations, characterized by a ground station distribution within the imposed
boundary, with the exception of two ”outlier stations”, respectively at approximately +78◦ and -72◦.

Figure 12: Scenario 2 Attackers vs 25(+1) Defenders. Coverage map before (left) and after (right)
the addition of the defender ground station.

Figure 13: Scenario 5 Attackers vs 25(+1) Defenders. Coverage map before (left) and after (right)
the addition of the defender ground station.

Figures 12,13,14 portray examples of uptime percentage, given relatively to a base uptime map for
the constellation. The uptime percentage in Figures 12,13,14 is recorded with no attacker present,
for scenarios with respectively 2, 5 and 10 attackers. As expected, the attacker effect on the satel-
lites uptime is greater for a larger number of attackers: while the consequences on constellation
performances are modest when solely two attacking ground stations are present, a significant re-
duction of the original coverage is achieved with five attacking ground stations. Concurrently, Fig-
ures 13,14 (right) demonstrate that the defender is able to gain back partial control of the satellites
over extended regions with the addition of a single defending ground station situated at the evolved
location.
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Figure 14: Scenario 10 Attackers vs 25(+1) Defenders. Coverage map before (left) and after (right)
the addition of the defender ground station.

Averaged values across the 20 runs of each case study for the uptime percentage before and after
the addition of the evolving defender ground station, together with the average relative improve-
ments, are reported in Table 5. More specifically, the reported average uptime percentage are scaled
considering the extension of the area of each 2D cell projected over a 3D sphere. We observe that, in
the first two rows of Table 5, that are the scenarios where the number of attackers is comparable to
the number of defenders, the presence of an attacker can strongly affect the average base coverage
(reduction to an absolute average coverage of 14% for the 2vs2(+1) case, with a base absolute value
of 55%). Additionally, the first two scenarios show the best average relative improvements, which
was expected when the number of defenders and attackers is comparable. Within games with a
comperable number of attacking and defending ground stations, the addition of a single ground sta-
tion may introduce a important variation of the ultimate game equilibrium solution (in favor of one
of the players). Looking at KSAT cases, the average uptime percentage before the addition of the
ground station decreases together with the increase of number of attacker (which was, an expected
behavior), while the addition of a defender ground station introduces an improvement comparatively
smaller with respect to the other two scenarios.

Scenarios Uptime % (before) Uptime % (after) Improvement

1 vs 2(+1) 57% 79% 22%

2 vs 2(+1) 26% 51% 24.8%

2vs25(+1) 85% 90% 4.4%

5vs25(+1) 75% 80% 4.9%

10vs25(+1) 65% 69% 4.9%

Table 5: Experiments results: average percentage uptime across runs for each scenario. Before and
after referred to the additional defender ground station. Base absolute coverage is 55%.
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DISCUSSION
The experiments presented in Sections and serves to gain the initial insight necessary to develop

a robust and capable framework to solve transit time games and gain confidence that such a frame-
work may be expanded to enable early discovery of hidden threats to P-LEO constellations.

From our study emerged that for scenarios involving satellites on polar orbit, the dominant so-
lution for ground station placement tends to the poles or to the highest latitudes available. While
this result was expected from simple geometric considerations (in fact, ground stations on the poles
are guaranteed to have an access opportunity to each satellite in the constellation at least once every
orbit), it is also reassuring that coevolution is able to consistently discover such a known solution.
However, it is reasonable to expect that large constellations will comprise a combination of polar
and non-polar orbit planes. Engineering considerations such as launch cost and coverage optimiza-
tion considerations (e.g., optimal coverage of densely populated areas at mid-latitudes) may place
a restriction to solely use polar orbits for large constellations. As demonstrated by our analysis,
the introduction of inclined orbit may significantly complicate the solution space, which becomes
highly tessellated geographically, with advantageous regions blended to poor-performance regions.
In other words, less predictable game dynamics, thus threats, may exist when inclined orbit are in-
troduced.

It is also worth noting that our analysis is agnostic to regional coverage and geopolitical con-
straints; under this assumption, the defender added station will improve coverage regardless of
whether the interested areas are ground or water based. Similarly, as visible in KSAT case study,
the attacker evolved locations are most likely to be water based or correspond to areas characterized
by reduced/ difficult accessibility (where may be impractical to build ground stations). The dom-
inant solution at the northernmost (or southernmost) latitude, also noted in all KSAT experiments
for at least one attacking station, may also become suboptimal, or even unfeasible, when acces-
sibility or geopolitical constrains are introduced. While our fitness function is currently based on
time, without any spatial attribute, the introduction of geopolitical constraints or cost penalization
(e.g., penalizing locations where it would be impractical to deploy a ground station) may yield to
significantly different attacking and defending solutions.

Observations were also gathered to develop insight into coevolution. Across all the runs of all the
scenarios, coevolution was, on average, well-behaved, meaning that the simulation set up (with all
its assumptions) was well-posed; in particular, we noticed that the most compelling driver for a well-
behaved coevolution was the maximum latitude range available to evolve a ground station location,
which eliminated trivial, dominant solutions. In fact, experiments conducted for the same scenarios
without latitude boundaries revealed that the solution for both attacker and defender evolved ground
stations tended to rapidly converge toward polar regions.

To conclude, general considerations can be drawn about the computational cost of our experi-
ments; considering that overall the runtime cost scales with the size of the constellation (both in
terms of number of orbital satellites and number of ground stations) and with the number of time
steps, to conduct our largest simulation (10vs25(+1) scenario) approximately 12 hours were re-
quired.

CONCLUDING REMARKS

Technology development, cost reduction, and the constant demand for high-quality service, are
pushing the design and development of large satellite constellations; concurrently, the number of
threats to ground and space assets is increasing as well, thus requiring the introduction of identi-
fication and mitigation strategies. In this work, we study potential threats in the form of a ground
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station transit time game formulation, which was analyzed at different levels of complexity: at first,
we demonstrated with a simple example how the solution to optimal ground station location aimed
to the maximization (or minimization, depending from the perspective) of the transit time can be
found through a semi-analytical method; then, we underlined how modeling of more complex sce-
narios requires the introduction of more advanced techniques. Initially, we propose evolutionary
algorithms as solution method to tackle this type of high-dimensional, potentially stochastic, envi-
ronment; then, we modified the base scenario allowing also the defender to evolve a ground station
location, thus introducing competitive coevolution as solution method. In the analysis of the solu-
tions, we introduced different visualization tools to aid the interpretation of the results in terms of
location, being geographic position alone insufficient to fully comprehend the solution proposed by
the algorithm, especially with multiple ground stations, and many satellites configurations. Our cur-
rent results demonstrate the effectiveness of the proposed strategy and open the possibility to adapt
the selected evolutionary techniques to different formulations of the problem; future work will in-
clude the introduction of reactive behavior to the defender capabilities, thus allowing the defender to
evolve a strategy, and the generalization of the orbital model to non-polar orbit configurations. Ad-
ditionally, region-based objectives, cost penalization and geopolitical constraints will be introduced
in the problem modeling, thus allowing for more realistic solutions.
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